Lasers can make cold atoms mimic the physics seen in
But the conventional way to make optical lattices has some limitations. The wavelength of the laser light determines the location of the hills and valleys, and so the distance between neighboring valleys—and with that the spacing between atoms—can only be shrunk to half of the light's wavelength. Bringing atoms closer than this limit could activate much stronger interactions between them and reveal effects that otherwise remain in the dark.
Now, a team of scientists from the Joint Quantum Institute (JQI), in collaboration with researchers from the Institute for Quantum Optics and Quantum Information in Innsbruck, Austria, has circumvented the wavelength limit by leveraging the atoms' inherent quantum features, which should allow atomic lattice neighbors to get closer than ever before. The new technique manages to squeeze the gentle lattice hills into steep walls separated by only one-fiftieth of the laser's wavelength—25 times narrower than possible with conventional methods. The work, which is based on two prior theoretical proposals, was recently published in Physical Review Letters .
Read more at: https://phys.org/news/2018-03-two-toned-pattern-steep-quantum-walls.html#jCp
Social Plugin