Nanoparticles and magnets offer new, efficient method of removing oil from water

In a study published this spring in the Journal of

Nanoparticle Research, the researchers used magnetic  to separate oil from water through a simple process that relies on  and a magnet. The engineers believe their  could improve  for oil and gas production, more efficiently clean up oil spills and potentially remove lead from drinking water.
Today, nanoparticles, which are tiny particles that can be coated with different chemicals such as polymers, are used in a wide variety of areas and industries including medicine, energy and electronics. The versatility of nanoparticles inspired the UT Austin team to explore how the particles could be applied to oil production to lessen its environmental footprint and increase efficiency in both onshore and offshore drilling. They believe their technique could also be used to treat the millions of gallons of fresh water used in hydraulic fracturing and to help clean drinking water.
Modern oil production methods separate 95 percent of the oil from produced water but leave behind small oil droplets that are difficult to extract, which makes water treatment and disposal more challenging and environmentally risky.
"This new technique is really aimed at removing that little bit of oil in that water that needs to be removed before you can consider it treated," said Saebom Ko, a research associate in the Department of Petroleum and Geosystems Engineering and lead author on the study. "The advantage of employing magnetic nanoparticles is that the small oil droplets that attach to the nanoparticles are much more quickly separated from water than traditional physical separation processes because magnetic force can be orders of magnitude larger than gravitation."


Read more at: https://phys.org/news/2017-06-nanoparticles-magnets-efficient-method-oil.html#jCp