Researchers engineer transformer-like carbon nanostructure

In the study, the joint research team, led by Professor

Byung Soo kim and Professor Oh Hoon Kwon has presented a unique design and synthesis of hybrid  nanosheets (CNSs), which show a strong solvatochromic behavior with wide color tunability ranging from blue to orange and even to white in various solvents.
This unique hybrid CNS hosts clusters of carbon nanorings on the surface of graphene-oxide (GO) nanosheets as the product of the hydrothermal reaction of small molecular precursors in the presence of GO nanosheets. Moreover, under UV and visible-light excitation, the hybrid CNS exhibits tunable emission spanning the wide range of colors in a series of solvents with different polarities.
According to the research team, this interesting spectroscopic behavior is found to originate from hydrogen-bonding interactions between CNS and solvents, which eventually induce the morphological transition of CNS from 2D sheets to 3D crumpled morphologies, affecting the lifetimes of emissive states.
"The clusters of carbon nanorings on the surface of GO nanosheets have different chemical reactions depending on the properties of solvents," says Yuri Choi (Combined M.S./Ph.D. student of Natural Science), the first author of the study. "The spectroscopic behavior of CNS is found to originate from hydrogen (H)-bonding interactions between CNS and solvents."


Read more at: https://phys.org/news/2017-06-transformer-like-carbon-nanostructure.html#jCp