"Self-assembly is the universal process by which very
Unlocking self-assembly could allow us to create materials that don't exist naturally and we can't currently create ourselves.
Using self-assembly, scientists could create custom materials that are both versatile like biological systems and tough like industrial ones. These materials could be used in better water purifiers, more efficient solar cells, faster catalysts that improve manufacturing, and next-generation electronics. Using self-assembly in manufacturing could also lead to cheaper and more efficient processes.
"We want to make synthetic materials that rival what we see in nature," said Ron Zuckermann, a researcher at the Molecular Foundry, a Department of Energy (DOE) Office of Science user facility. "Biological systems are very sensitive and fragile. We want to make rugged industrial-grade materials that can do the same things [they do]."
But scientists can't create things that combine the best of both biological and synthetic characteristics out of just any substance. Nanoparticles are likely to be the key. When scientists assemble these tiny particles into sheets or tubes, the final product is often just one atom tall. Because of their size, nanoparticles act differently than large amounts of the same material. For example, a chunk of gold doesn't scatter light the way a diamond does. But gold nanoparticles scatter light very well, making them useful in electron microscopes. Unlike regular materials, scientists can control nanoparticles' characteristics by changing their size and shape.
Read more at: https://phys.org/news/2017-07-self-assembly-scientists-coaxing-nanoparticles-customized.html#jCp

Social Plugin