Nanometric-sized water drops are everywhere—in the air
Unique perspective on miniscule droplets
At EPFL, Sylvie Roke has developed a unique method for examining the surface of droplets one thousandth the thickness of a human hair, with a volume of an attoliter (10−18 liters). "The method involves overlapping ultrashort laser pulses in a mixture of water droplets in liquid oil and detecting photons that are scattered only from the interface", explains Roke. "These photons have the sum frequency of the incoming photons and are thus of a different color. With this newly generated color, we can determine the structure of the interface."
Hydrogen bonding as strong as in ice
The surface of the water droplets turns out to be much more ordered than that of normal water, and is comparable to super-cooled water in which the molecules have very strong hydrogen bond interactions. In ice, these interactions lead to a stable tetrahedral configuration surrounding each water molecule. Surprisingly, this type of structure was found on the surface of the droplets even at the room temperature—50 °C above were it would normally appear.
Read more at: https://phys.org/news/2017-05-surprisingly-nanoscale.html#jCp
Social Plugin