Since lithium metal possesses an ultrahigh theoretical
"We found that a lithiophilic material with good metallic lithium affinity can guide the lithium metal nucleation. Therefore, designing a lithium-plating matrix with a high surface area and lithiophilic surface makes sense for a safe and efficient lithium metal anode," said Xiao-Ru Chen, an undergraduate student in Tsinghua University. "So we employed a nitrogen-doped graphene matrix with densely and uniformly distributed nitrogen containing functional groups to guide lithium metal nucleation and growth."
"The nitrogen containing functional groups are lithiophilic sites, confirmed by our experimental and DFT calculation results. Lithium metal can plate with uniform nucleation during the charging process, followed by growth into dendrite-free morphology. While on the normal Cu foil-based anode, the nucleation sites are scattered, which may cause lithium dendrite growth more easily," said Xiang Chen, a Ph.D. student at Tsinghua University.
Read more at: https://phys.org/news/2017-05-dendrite-free-lithium-metal-anodes-n-doped.html#jCp
Social Plugin