Nanotubes that build themselves

In the present study, researchers from Lund University in

Sweden, together with colleagues from Vilnius University in Lithuania, have studied how molecules attach to each other using weak chemical bonds to form large structures.
The aim of the study was to determine the smallest possible size of these molecules, in which they are still able to provide enough information to successfully attach and form a desired large structure. The researchers' strategy has been to use many weak hydrogen bonds which assemble themselves in a pre-programmed manner.
"It took 20 years for us to discover the design of this molecule which resulted in molecular nanotubes", says Kenneth Wärnmark, chemistry professor at the Faculty of Science at Lund University.
As a unique bonus, they also discovered that the molecule can construct different shapes, depending on its environment. The researchers are able to modify this environment, partly, through their choice of solvent and, partly, through their choice of a so-called "guest molecule".
"The  can form a tube, but also change into the shape of a capsule or a molecular belt", Kenneth Wärnmark.
Unlike the developed carbon nanotubes which are already on the market, the new molecular nanotubes can be regulated with regard to the diameter. Furthermore, the manufacturing process is both simpler and more environmentally friendly compared to that of the carbon  which are made from individual carbon atoms and are assembled using strong chemical bonds at high temperature.


Read more at: https://phys.org/news/2017-04-nanotubes.html#jCp