'Persistent photoconductivity' offers new tool for bioelectronics

There's a great deal of interest in being able to control

cell behavior in relation to semiconductors – that's the underlying idea behind bioelectronics," says Albena Ivanisevic, a professor of  science and engineering at NC State and corresponding author of a paper on the work. "Our work here effectively adds another tool to the toolbox for the development of new bioelectronic devices."
The new approach makes use of a phenomenon called persistent photoconductivity. Materials that exhibit persistent photoconductivity become much more conductive when you shine a light on them. When the light is removed, it takes the material a long time to return to its original conductivity.
When conductivity is elevated, the charge at the  of the material increases. And that increased surface charge can be used to direct cells to adhere to the surface.
"This is only one way to control the adhesion of cells to the surface of a material," Ivanisevic says. "But it can be used in conjunction with others, such as engineering the roughness of the material's surface or chemically modifying the material."
For this study, the researchers demonstrated that all three characteristics can be used together, working with a gallium nitride substrate and PC12 cells – a line of model cells used widely in bioelectronics testing.
The researchers tested two groups of gallium nitride substrates that were identical, except that one group was exposed to UV light – triggering its persistent photoconductivity properties – while the second group was not.
"There was a clear, quantitative difference between the two groups – more  adhered to the materials that had been exposed to ," Ivanisevic says.


Read more at: https://phys.org/news/2017-05-persistent-photoconductivity-tool-bioelectronics.html#jCp