Fractionating DNA—from hours to minutes

The new chip is capable of fractionating DNA fragments

within just a few minutes, while conventional approaches take hours. The chip does this in high resolution and also purifies the fragments; it removes the other salts in the DNA sample. Tiny amounts of DNA, like in medical diagnostics or in forensics, will be sufficient. The fragments are typically in the size range of second generation DNA sequencing, the next step after the well-known Human Genome Project.
Moving snake
UT scientist Burcu Gumuscu and her colleagues achieved this high speed and resolution by inventing a new approach to the common technique of gel electrophoresis. In the conventional approach, the DNA moves in a gel by an applied electric field. Larger fragments will move slower than small ones, and in this way size separation is possible. But the electric field has one direction and the molecules move in a . What about varying the field, the UT scientists thought. If you periodically apply an  of different magnitude in the perpendicular direction, the fragments will also respond to this. They don't just move in a straight line now, but somewhere in between the two field directions. As large fragments respond differently - like a snake moves - to the fields than small ones, fragments can be separated.


Read more at: https://phys.org/news/2017-05-fractionating-dnafrom-hours-minutes.html#jCp