Copper hydroxide nanoparticles provide protection against toxic oxygen radicals in cigarette smoke

obacco smoke contains almost 12,000 different

constituents. Among these are narcotoxic substances such as nicotine, blood toxins like cyanide and carbon monoxide, not to mention the various carcinogens. Among these are free , also known as reactive oxygen species. More than 10 quadrillion (1016) of these molecules are inhaled with every puff on a cigarette. The Mainz-based team headed by Professor Wolfgang Tremel has discovered how to significantly lower the levels of these free oxygen radicals and thus markedly reduce the toxicity of . This development could help not only to make the consumption of tobacco-based products somewhat less hazardous but it could also be extended to other areas in which reactive oxygen radicals are a problem.
Researchers took the underlying idea behind the concept from natural enzymes. In the presence of an enhanced concentration of  as a result of, for instance, enzymatic dysfunction, UV radiation or the inhalation of , uncontrolled cell division and oxidative cell damage can occur. Nature regulates the concentration of radicals by means of antioxidant enzymes such as superoxide dismutase (SOD), which plays a central role in the prevention of pathological processes, including tumor and cancer growth, inflammatory diseases, and stroke. The naturally occurring enzyme utilizes metals such as copper-zinc, nickel, iron, and manganese as reactive centers that cause oxygen radicals to decompose so that the organism is protected from their aggressive reactive behavior.
Today it is possible to produce or isolate enzymes like SOD, but the process is accompanied by high costs. However, their poor stability on exposure to high temperatures and non-physiological pH values complicates matters. With natural enzymes in mind, researchers in the field of biomimetics are seeking ways to imitate natural biological reactions with the help of synthetic compounds. Chemist Karsten Korschelt and food chemist Dr. Carmen Metzger investigated amino acid-functionalized copper hydroxide nanoparticles as potential synthetic analogues of cupriferous SOD. They found that the particles were associated with a higher rate of catalytic activity in terms of the decomposition of oxygen radicals than the enzyme itself. "This is in principle not such a surprise as all copper atoms on the particle surface can have a catalytic effect, yet the enzyme has only one active center," said Professor Wolfgang Tremel. In contrast to , functionalized copper hydroxide nanoparticles are very stable and inexpensive to produce.


Read more at: https://phys.org/news/2017-05-copper-hydroxide-nanoparticles-toxic-oxygen.html#jCp