"Our method is similar to the technique used to provide
Controlling light with electric fields is difficult. Photons, the basic units of light, are neutral – they have no charge, so they usually do not respond to electric fields. Instead, light may be controlled by tuning the refractive index of materials. Refractive index refers to the way materials reflect, transmit, scatter and absorb light. The more one can control a material's refractive index, the more control you have over the light that interacts with that material.
"Unfortunately, it is very difficult to tune refractive index with electric fields," Cao says. "Previous techniques could only change the index for visible light by between 0.1 and 1 percent at the maximum."
Cao and his collaborators have developed a technique that allows them to change the refractive index for visible light in some semiconductor materials by 60 percent – two orders of magnitude better than previous results. The researchers worked with a class of atomically thin semiconductor materials called transition metal dichalcogenide monolayers. Specifically, they worked with thin films of molybdenum sulfide, tungsten sulfide and tungsten selenide.
Read more at: https://phys.org/news/2017-05-electric-fields.html#jCp
Social Plugin