Researchers create anticancer nanomaterials by simulating underwater volcanic conditions

The researchers have created these size-tailored

nanoclusters using the Leidenfrost effect. It is an event commonly observed in the kitchen while cooking—droplets on a hotplate will hover over the surface instead of making physical contact. In the Leidenfrost effect, a liquid close to an object much hotter than the liquid's boiling point produces an insulating vapour layer, preventing the liquid from boiling rapidly. Near volcano gates deep in the ocean, or under special conditions in the lab, the  can cover a large area without rising away from the surface, while making the molecules in the liquid above behave in an exceptional way.
"The dynamic underwater chemistry seen in nature is inspiring for the next generation of eco-friendly nanochemistry. In this context, green synthesis of size-tailored nanoparticles in a facile and scalable manner via a dynamic process has not been introduced so far," says Professor Mady Elbahri at Aalto University. "We demonstrate the Leidenfrost dynamic chemistry occurring in an underwater overheated confined zone as a new tool for customised creation of nanoclusters of zinc peroxide. The hydrodynamic nature of the phenomenon ensures eruption of the nanoclusters towards a much colder region, giving rise to growth of monodisperse, size-tailored nanoclusters."


Read more at: https://phys.org/news/2017-05-anticancer-nanomaterials-simulating-underwater-volcanic.html#jCp