New materials bring quantum computing closer to reality

That limitation is why Stanford electrical engineering

Professor Jelena Vuckovic is looking to quantum computing, which is based on light rather than electricity. Quantum computers work by isolating spinning electrons inside a new type of semiconductor material. When a laser strikes the electron, it reveals which way it is spinning by emitting one or more quanta, or particles, of light. Those spin states replace the ones and zeros of traditional computing.
Vuckovic, who is one of the world's leading researchers in the field, said quantum computing is ideal for studying biological systems, doing cryptography or data mining – in fact, solving any problem with many variables.
"When people talk about finding a needle in a haystack, that's where quantum computing comes in," she said.
Marina Radulaski, a postdoctoral fellow in Vuckovic's lab, said the problem-solving potential of quantum computers stems from the complexity of the laser-electron interactions at the core of the concept.
"With electronics you have zeros and ones," Radulaski said. "But when the laser hits the electron in a quantum system, it creates many possible spin states, and that greater range of possibilities forms the basis for more complex computing."


Read more at: https://phys.org/news/2017-05-materials-quantum-closer-reality.html#jCp