Now, scientists have developed a new method to probe
"This is like granting sight to the blind," said lead author Adrian Gozar of Yale University. "We can finally see the all-important variations that dictate functionality at this scale and better explore both cutting-edge electronics and fundamental questions that have persisted for decades."
Scientists from Yale University, Harvard University, and the U.S. Department of Energy's Brookhaven National Laboratory developed the technique to determine why a particular device fabrication technique—helium-ion beam lithography—failed to create the scalable, high-performing superconducting nanowires predicted by both theory and simulation.
In previous work, heavy ion beams were used to carve 10-nm-wide channels—some 10,000 times thinner than a human hair—through custom-made materials. However, the new study revealed beam-induced damage rippling out over 50 times that distance. At this scale, that difference was both imperceptible and functionally catastrophic.
"This directly addresses the challenge of quantum computing, for example, where companies including IBM and Google are exploring superconducting nanowires but need reliable synthesis and characterization," said study coauthor and Brookhaven Lab physicist Ivan Bozovic.
Read more at: https://phys.org/news/2017-04-technique-reveals-d-composition-powerful.html#jCp
Social Plugin