Scientists set record resolution for drawing at the one-nanometer length scale

In the ongoing quest to pattern materials with ever-

smaller feature sizes, scientists at the Center for Functional Nanomaterials (CFN)—a U.S. Department of Energy (DOE) Office of Science User Facility at Brookhaven National Laboratory—have recently set a new record. Performing EBL with a scanning  (STEM), they have patterned thin films of the polymer poly(methyl methacrylate), or PMMA, with individual features as small as one nanometer (nm), and with a spacing between features of 11 nm, yielding an areal density of nearly one trillion features per square centimeter. These record achievements are published in the April 18 online edition of Nano Letters.
"Our goal at CFN is to study how the optical, electrical, thermal, and other properties of materials change as their feature sizes get smaller," said lead author Vitor Manfrinato, a research associate in CFN's electron microscopy group who began the project as a CFN user while completing his doctoral work at MIT. "Until now, patterning materials at a single nanometer has not been possible in a controllable and efficient way."
Commercial EBL instruments typically pattern materials at sizes between 10 and 20 nanometers. Techniques that can produce higher-resolution patterns require special conditions that either limit their practical utility or dramatically slow down the patterning process. Here, the scientists pushed the resolution limits of EBL by installing a pattern generator—an electronic system that precisely moves the electron beam over a sample to draw patterns designed with computer software—in one of CFN's aberration-corrected STEMs, a specialized microscope that provides a focused electron beam at the atomic scale.
"We converted an imaging tool into a drawing tool that is capable of not only taking atomic-resolution images but also making atomic-resolution structures," said coauthor Aaron Stein, a senior scientist in the electronic nanomaterials group at CFN.


Read more at: https://phys.org/news/2017-04-scientists-resolution-one-nanometer-length-scale.html#jCp