In the ongoing quest to pattern materials with ever-
"Our goal at CFN is to study how the optical, electrical, thermal, and other properties of materials change as their feature sizes get smaller," said lead author Vitor Manfrinato, a research associate in CFN's electron microscopy group who began the project as a CFN user while completing his doctoral work at MIT. "Until now, patterning materials at a single nanometer has not been possible in a controllable and efficient way."
Commercial EBL instruments typically pattern materials at sizes between 10 and 20 nanometers. Techniques that can produce higher-resolution patterns require special conditions that either limit their practical utility or dramatically slow down the patterning process. Here, the scientists pushed the resolution limits of EBL by installing a pattern generator—an electronic system that precisely moves the electron beam over a sample to draw patterns designed with computer software—in one of CFN's aberration-corrected STEMs, a specialized microscope that provides a focused electron beam at the atomic scale.
"We converted an imaging tool into a drawing tool that is capable of not only taking atomic-resolution images but also making atomic-resolution structures," said coauthor Aaron Stein, a senior scientist in the electronic nanomaterials group at CFN.
Read more at: https://phys.org/news/2017-04-scientists-resolution-one-nanometer-length-scale.html#jCp
Social Plugin